
NOTATION 

Re = wd/v, Reynolds number; Pr = v/D, diffusion Prandtl number; ~i', angle between the 
frontal critical point and the point of detachment of the boundary layer; w, speed of the 
incoming flow; d, diameter of the sphere; v, kinematic viscosity of the liquid; D, diffusion 
coefficient. 
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PORE MOTION AND CHANGE OF SHAPE IN A TEMPERATURE FIELD 

BECAUSE OF EVAPORATION AND CONDENSATION PROCESSES 

R. Ya. Kucherov and L. N. Shulepov UDC 536.422 

Mass transfer in a vacuum spherical and cylindrical pore due to evaporation and 
condensation of the wall material in a temperature gradient field is examined 
on the basis of a molecular-kinetic analysis. 

The temperature gradient over a pore section causes transport of the wall material and 
results in the origination of directional pore motion. A number of mass transport mechanisms 
exist that cause such motion. An analysis of different motion mechanisms and conditions 
under which some one is dominant can be found in [i]. The governing mass transfer mechanism 
for large-scale vacuum pores at high temperatures is transport through the pore volume, i.e., 
recondensation; hence, mass transfer occurs in the free-molecule regime in a solid with low 
saturated vapor pressure. This regime was investigated in a vacuum pore in a number of 
papers [1-3], in which, however, a macroscopic description of the mass transport is used, 
and only the case of small temperature gradients over the pore section is examined. The 
kinetic approach used in this paper has a number of advantages as compared to the macroscopic 
description, since it permits refinement of the velocity of pore motion, the consideration 
of the mass transport for an arbitrarily given wall-temperature distribution (usually the 
case when a constant temperature gradient exists far from the pore is considered), and also 
nonlinear problems, and the clarification of the nature of the change in its shape. 

Let us examine the mass transfer in a spherical pore and a cylindrical channel whose 
wall temperature is constant along the channel axis z. We shall assume that both the evap- 
orating and the reflected molecules have a Maxwell velocity distribution, a condensation 
factor ~ independent of the temperature, and is.tropic pore-surface characteristics. Under 
these assumptions, the expression for the mass flux density incident on the pore surface at 
the point r is written analogously to what is done for free-molecular flow around bodies 
with concavities [4]: 

q (r) = ] 2~km I] Sdf ]/-TP(rJ(r~----~-G(r h)d h v-(1- I~)SJ q(r~)G(rrOdh' (1) 

where P(r) is the saturated vapor pressure of the pore wall material at the temperature T(r). 
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The integration on (I) is over the whole pore surface visible from the point r. The first 
term on the right side of (i) is the contribution of particles being evaporated from the 
pore surface to the mass flux density, and the second term is from particles being reflected 
from the pore surface. The influence function G(r, rl) of a pore surface element dr~ on the 
element 3rG(r , r l) is usually expressed [4] in terms of the angles 0 and 0, between a line 
connecting the surface elements dr ~nd drz, and their normals. For a complete diffusion 
nature of the reflected and evaporated particles distribution functions 

cos0cos0~ 
Off, r O -  ~r~2 ' (2) 

where rx~ is the distance between the surface elements under consideration. 

For a spherical pore cos e = cos e~ = rx2/2R. Therefore, the kernel of the integral 
equation (i) turns out to be a constant. The mass flux density incident on the wall is 
also constant over the whole pore surface. We obtain for the resultant mass entrainment 
from the wall 

. /  m [ p(r) ~ is f P(rO ] 
M ( r ) =  i 2~x/e ~ ] /T ( r )  4s~R 2 ..... V T ( r 0  dr~ . (3) 

Let us examine the case when a constant temperature gradient VT exists far from the 
pore in the solid body bulk, and the temperature change over the pore section is slight. 
The wall temperature distribution has the following form in this case [i]: 

T(%) = To + (1 + • RIvTI cosx, (4) 

where To is the unperturbed value of the temperature at the location of the pore center, 
and X is the angle between the radius-vector of the point under consideration r and 7T. 

It should be noted that the kinetic consideration of heat transmission in a pore by 
radiation, which is performed perfectly analogously to the mass transport consideration 
for light scattering by the Lambert law, will result in a different value of the coefficient 
• from that obtained in [i]: 

;~ - -  4sRoT~ 
2~ + 4sR(~T~ 

(the coefficient in the term associated with heat transmission by radiation equals 4 instead 
of the 8/3 in [I]). Expanding P//~in (3) in a series and keeping the/first terms of the 
expansion, we obtain 

/ /7~ [ 
M(X)= ] /  ---~-k- [5 (1 + • R cos X IvTI �9 + (1 + • cos2%__ --3-o (vT)2 P ] . (5) 

(IT V'T To ~ dT ~ V~-T 

The first component in the right side of (5) describes the pore motion without any 
change in its shape, The velocity of such motion is proportional to the pore radius, hence 
the value of the velocity obtained in this paper is 1.5 times higher than the value obtained 
in [i]. The expression (5) permits estimation of the distance I traversed by the spherical 
pore without substantial change in its shape. Taking only the quadratic nonlinearity into 
account, and using the Clapeyron--Clausius equation [5] 

P~=-Poexp(, kTQ ) '  (6) 

we obtain 

2 
I ~< IvTI Q 

T kT 

Therefore, a pore can traverse a large distance without substantial change in its shape 
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in the field of a weak temperature gradient. The second term in (5) describes the change 
in pore shape; it is seen that with the second term taken into account the pore acquires 
the shape of an oval extended in the direction of the temperature gradient. In this ap- 
proximation the change in shape of pores of different radii as they traverse an identical 
distance will turn out to be identical. 

Computations of the mass transport for a significant temperature drop over the pore 
section by using the exact expression (5) show that in this case it will point towards the 
hot side. 

A change in pore shape in conformity with the Le Chate!ier principle stimulates the 
process tending to weaken this change. In this case such a process is the mass transport 
from sections with a large radius of curvature to sections with a smaller surface radius 
of curvature. The saturated vapor pressure over a fluid surface having a radius of curva- 
ture R is determined by the expression [5] 

P (R) P (oo) exp ( 2c~ '] 
\ RkT 1' 

(7) 

where m is the volume per single particle in the condensed phase, and y is the coefficient 
of surface tension. 

This relationship is qualitatively valid even for a solid-vapor system, and can be 
utilized to estimate the velocity of pore spheroidization. By equating the pressure drop 
caused by the quadratic nonlinearity to the pressure drop associated with the change in the 
radius of curvature over the pore surface, we obtain an estimate of the pore deformation 
in the equilibrium state 

A/? 
_ _ . ~  R ~, 

R 4co? k kT - -  " 

The deformation turns out to be proportional to the cube of the radius. Therefore, shallow 
pores should remain spherical, while coarse pores can change shape significantly. The de- 
viation from sphericity grows rapidly with the temperature gradient and the reduction of the 
temperature level. 

Let us consider the mass transport far from the ends in a long cylindrical channel of 
radius R. The channel wall temperature varies in a given manner T = T(q0. For a cylindri- 
cal channel G(r, rl) has the form [4] 

G(z, % z~%)= 
4R 2 sin, ~ % -- ce 

2 

a [ (zl-- z)2 + 2RZsin2 %--q~ ] 

Since the temperature is independent of the coordinate z, then by integrating with respect 
to z~ in (i), we obtain the following integral equation for the mass flux density incident 
on the channel wall: 

q(q~) := 1 / ~ 4 J 1/7' ( % )  - - - 7 -  I T - -  ] q (%) sin 2 d%. 
c9 q; 

The solution of (8) is written in the form 

(8) 

2 ~  

q (~) = 1// m ~ -  P (%) sin V~- (2~ %- cp .-- %) d% + 
2ak 4 , ]/T-~(%) 2 

0 

(9) 
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2ax q~ 

t 1 s i n a l / ~ -  j" P(qh) V~- (2a % ) d %  + 2  P (%)  I,"-~ (9)  cos - + q) - -  sin. (q~ - -  %) d% . 
+ 1 - : cosaV~-  ~ T(%) 2 , ~ T(%) 2 

0 0 

For B = i Eq. �9 simplifies considerably and we have for the resultant mass flux on the wall 

/ - - - [  P(m) 1 j, P (q)l) sin qh--qD d%J.  M (~p) = V m 
2ak .. F T (qo) 4 F? (~P~) 2 

s 

(i0) 

When a constant temperature gradient perpendicular to the cylinder axis exists far from 
the pore and the temperature drop over the pore section is small, then by limiting ourselves 
to taking account of the quadratic nonlinearity we obtain for the mass entrainment from the 
wall 

1 ' m - ( l + x )  Rcosqo[vT ] dT V'T 15 M (q~) = 2ak - -  - -  (1 + •  2 (1 - -  2 c o s  z q z ) ( v T )  z �9 , ( 1 1 )  
dTZ l IT  To 

where 

1 6 ~  ~Toa R 
4 - - 8  

16e 

4 - - 8  

The first term in the right side of (ii) describes pore movement without a change in 
its shape. The velocity of pore motion turns out to be twice the value obtained in [i]. 
The second term describes the change in the pore shape. In this approximation, the channel 
section acquires the shape of an oval extended in the direction of the temperature gradient. 
The expression (ii) governing the mass transport in a cylindrical channel is analogous in 
structure to the corresponding expression for the spherical pore (5). Therefore, the esti- 
mates regarding the change in shape obtained for a spherical pore remain valid even for a 
cylindrical channel. 

NOTATION 

m, molecule mass; k, Boltzmann constant; R, radius of a spherical pore and a cylindri- 
cal channel; %, heat conduction; ~, emissivity; o, constant in the Stefan--Boltzmann law; 
Q, heat of evaporation. 

i. 

2. 
3. 

4. 
5. 

LITERATURE CITED 

Ya. E. Geguzin and M. A. Krivoglaz, Motion of Macroscopic Inclusions in Solids [in 
Russian], Metallurgiya, Moscow (1971). 
F. A. Nichols, "Movement of pores in solids," J. Met., 21, No. i, 19-27 (1969). 
P. F. Sens, "The kinetics of pore movement in U02 fuel rods," J. Nucl. Mater., 43, No. 
3, 293-307 (1972). 
M. N. Kogan, Rarefied Gas Dynamics [in Russian], Nauka, Moscow (1967). 
L. D. Landau and E. M. Liftshits, Statistical Physics [in Russian], Vol. i, Nauka, 
Moscow (1976). 

72 


